An irrational number \(\sqrt{2}\) and a fraction $$1-\frac{1}{2}$$
and a fact about \(\pi\): $$\frac2\pi = \frac{\sqrt2}2 \cdot \frac{\sqrt{2+\sqrt2}}2 \cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdots$$
Show Example 5